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The Feynma.n path-integral formulation of quantum mechanics is used to investigate the theoretical problem 
of the propagation of high-energy electrons through thin crystalline specimens. The primary objective is to 
find a satisfactory scattering approximation that accurately describes the transmitted (elastically scattered) 
wave, and still retains a mathematically invertible relation between the transmitted wave function and the 
specimen structure. It is shown that the path-integral method leads naturally to an invertible, higher-order, 
phase-object approximation, in addition to the usual kinematic approximation and the usual phase-object 
approximation. The higher-order phase-object approximation in turn leads to the noninvertible, multislice 
approximation of Cowley & Moodie, which had previously been derived by those authors from a semi- 
classical, physical-optics point of view. 

Introduction 

As early as 1928, Bethe developed the dynamical 
theory of electron diffraction. The theory gives, 
however, a solution which is highly complicated and 
also tedious to be applied to cases where more than 
two diffracted beams are considered. In subsequent 
years, the problem of dynamical scattering of electrons 
has been approached by a variety of theoretical 
methods, including the 'physical-optics' method of 
Cowley & Moodie (1957), an extension of Bethe's 
eigenvalue method (i.e. the Bloch wave method) by 
Howie & Whelan (1961), use of the Born series as 
developed by Fujiwara (1959), and use of the 
scattering-matrix method as given, for example, by 
Sturkey (1962) and by Fujimoto (1959). A full 
quantum-field theoretical method has also been applied 
(Ohtsukl & Yanagawa, 1966). A comparison of these 
approaches has recently been discussed in some 
detail by Goodman & Moodie (1974). Only recently 
have rigorous attempts been made to use the multislice 
dynamical theory of Cowley & Moodie (1957) for 
interpretation of electron images (Allpress, Hewat, 
Moodie & Sanders, 1972; Lynch, Moodie & O'Keefe, 
1975). Up to now the work has been limited to 
inorganic crystals. 

In this paper we present the derivation of four 
different high-energy electron-scattering approxima- 

tions, following the Feynman path-integral formulation 
of quantum mechanics. The four approximations are, 
in order of increasing complexity, the kinematic 
approximation, the phase-object approximation, a 
higher-order phase-object approximation (not pre- 
viously described) and the multislice approximation of 
Cowley & Moodie (1957). The conditions under which 
each of these approximations has a useful degree 
of validity is explored by representative, numerical 
calculations in the subsequent papers of the series. It 
is worth noting that these approximations, except for 
the multislice formulation, give an invertible relation 
between the transmitted wave function and the 
projected object potential. Thus the projected potential 
can be retrieved from the wave function, which can, 
in principle, be determined from the image intensities 
(see for example Misell, Burge & Greenaway, 1974; 
Lannes, 1976). 

The path-integral formulation of quantum mechanics 
developed by Feynman (1948) and Feynman & Hibbs 
(1965) appears to be a logical as well as an intuitive 
way of dealing with the scattering problem for high- 
energy electrons. The classical limit arises naturally in 
this formulation as a special case of quantum 
mechanics, when the quantities such as mass and 
velocity are so large that Planck's constant can be 
considered infinitesimal (Feynman & Hibbs, 1965). 
The path-integral formulation has been shown to be 
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consistent with the Schr6dinger equation (Nelson, 
1964; Feynman & Hibbs, 1965). 

The path-integral method not only gives a kind of 
simplicity that is often lost in the ordinary quantum- 
mechanics approach but also has the advantage of 
showing clearly the physical assumptions that lead to 
the various approximate scattering formulas. In 
Kinematic approximation, the concept of the Feynman 
path-integral formulation is introduced. The kinematic 
scattering approximation is rederived here in order 
to illustrate the interpretational simplicity developed 
through the derivation. In the following section, the 
phase-object approximation is derived on the basis of 
the near forward nature of the scattering. This approxi- 
mation assumes that the scattering can be described 
by a single straight-line path. Improvement of the 
approximation can be made by considering the paths 
which cascade along this straight-line path. A new 
dynamical approximation, the higher-order phase- 
object approximation, was developed under these 
assumptions. The validity of each of these approxima- 
tions is expected to be limited by crystal thickness. 
In the final section, the multislice dynamical 
approximation of Cowley & Moodie (1957), which 
previously was developed on the basis of a 'physical- 
optics' method, is also obtained by the Feynman 
path-integral approach. The remaining limitations of 
the multislice approximation can easily be seen in the 
Feynman path-integral approach, where they were not 
previously so evident from the 'physical-optics' 
derivation. 

Kinematic approximation* 

The kinematic approximation or the first Born approxi- 
mation (Scott, 1963; Schiff, 1955) was first derived 
by a perturbation-theoretical treatment of scattering 
(Born, 1926). First-order perturbation theory assumes 
that the scattered waves are weak compared with the 
initial wave. The far-field, Fraunhofer-scattered wave 
can be shown to be a spherical wave with amplitude 
proportional to the Fourier transform integral of the 
perturbing potential field. The derivation gives, 
however, no clear physical interpretation of the 
approximation. We rederive the kinematic approxima- 
tion following the path-integral formulation. With this 
method it is well known that the kinematic 
approximation can be clearly interpreted as corre- 
sponding to a single scattering process. 

The wave function of the electron, ~(r,t), under the 
influence of a potential field such as that of an atom or 
a crystal lattice, can be described by the following 

* The derivation of this approximation by the path-integral 
method has been outlined by Feynman & Hibbs (1965). The 
derivation given here follows their outline closely. 

integral equation: 

~(r,t) = f~o(ro,to) P(r,t; ro, t0) dr o (1) 

where P(r,t; ro, to) is called the propagator of the 
electron wave and ~o(ro,to) is the initial wave function. 

The propagator depends on the strength of the 
potential field and on the kinetic energy of the electron. 
It can be written as the path integral in going from the 
initial point (ro,to) to the final point (r,t), as follows: 

P(r,t; r0,t 0) = exp - -~  L(r',r',t') dt' Dr'  
r n  to 

and 
L(r',i",t') = ½m~ '2 - eV(r',t') ' 

where m, e, V and h are respectively the electron mass, 
the electron charge, the object potential, and Planck's 
constant divided by 2n; Dr' denotes the continuous 
sum of integrals over all possible paths. If the reader is 
not previously familiar with the conceptual and 
mathematical definition of a path integral, he should 
consult Feynman & Hibbs (1965) for reference. 

For high-energy electrons and weak object potential, 
such that 

l 

l 0 

the portion of the exponential function which depends 
upon the object potential can be expanded in a power 
series. The propagator can thus be written as 

! 
mr '2 dt' ) P(r,t; ro, to)= f exp(-i-h ~f 2 

i 

r 0 l o 

] x 1 + eV(t',t) dt' + higher-order terms Dr'. (3) 
to 

In the case where the sum of the higher-order terms in 
the potential is much smaller than the first-order 
term,t the propagator can be approximated in the 
following form: 

i lm~,2dt ' Dr' P(r,t; r0,t0) = J" exp ---~ 2 
1" o l o 

i i lmr'2dt'  f eV(r" t " )d t "  Dr'. (4) + ~ exp - ~  2 
It" o l o to 

We have replaced the variable t' in the integral of 
V(r',t') by the variable t" in order to avoid confusion 
with the time variable in the integral over the kinetic 
energy. The order of the integration over the variable 

"I" In crystalline objects, the contribution from the sum of many 
higher-order terms in the potential to the large-angle reflections 
may be quite significant because the amplitudes of the correspond- 
ing first-order reflection may be very small to begin with. 
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r', and that over t" can be interchanged, and (4) 
becomes then 

r 

[j" exp - -h  } P(r,t; ro,t0) 
ro to 

t r • t ~, 

+ ~ exp - -  lmr'Zdt' 
2 

t o r o 

x eV(r",t") exp - ~  
t II  

where r" is a position at t' = t", Dr '  includes the 
notion of integration for all paths between the position 
and time (ro,t o) to (r",t") as well as between 
( r" , t" )  to (r,t) and also the integration over all possible 
positions r" at the time t". The first term on the 
right-hand side of (5) can be interpreted as the propa- 
gator of a free electron. The second term is associated 
with the scattering by the potential field and can be 
interpreted as the superposition of all possible 
amplitudes for an electron starting from the incoming 
position and time (ro,t0), moving as a free particle to 
a point r" at a given time t' = t", and then being 
scattered by the potential field of the object, V(r",t"),  
after which it moves as a free particle to the point (r,t). 

By substituting this propagator into (1), the wave 
function for the outgoing electron can be written as 

{jex (' W (r, t) = f ~0 (r0, to) 
r 0 

t 

×f--~mr at' Dr'  dr0+~fW0(r0, t0) 
t0 t!i(! 

x t exp - -  h t T 

t 

i 1 m ~ , ,  2 d r ) d t "  D r ' ]  dr 0 

where ~0(r0,to) is the initial wave function of the 
electron. 

The wave function for an incoming electron with 
momentum hk o and energy E 0 can be described by 

exp (tic 0 . r - -hEo t ). 
i 

In (6), the propagator for an electron going from the 
interaction point r" at the time t" to the final point 
r at the time t in the forward direction can be repre- 
sented by the following equation (Feynman & Hibbs, 
1965): 

[ m  ] 3 / 2 [ i m ( r - r " ) ]  
P(r,t; r " , t " ) =  exp t") " 2zdh(t - t") 2h(t - 

(7) 

Substituting these expressions into (6), we can write 
then the wave function for the outgoing electron as 

/ i 
~(r,t) = exp~ --ik 0. r + -~ Eot ) 

+ ~- exp --ik 0. r' + - Eot" e V(r",t")  
h 

t o ro 

[ rn ]3/2 [ im(r--r")] 
× 2nih(t - t") exp 2h(t - t") dt" dr'. (8) 

We have assumed in this equation that the initial 
position is such that k 0. r 0 = 0 at the time t o = 0, so that 
the initial wave function can be replaced by unity. The 
first term on the right-hand side of (8) is the wave 
function of the free electron which passed through the 
potential field without being scattered, and the second 
term is the scattered wave function. 

For a potential of very large extent (see the dis- 
cussion below for the case of a potential field of 
restricted spatial extension) and for the far-field region 
such that r --, ~ at the time t --, ~ ,  the integral over 
t" for the scattered wave function can be performed in 
closed form when the potential is independent of time. 
After performing this integration, we can write the 
outgoing wave function of the electron as follows 
(Appendix): 

( , )  (;)(me) 
7S~(r , t )=exp --ik0.r +-hEo t + exp -h Eo t -~-~2 

× f exp(--iko.r" ) V(r") e x p ( - i k l r -  if'l) dr".  (9) 
I r -  r"l 

For a potential that falls off rapidly enough for large 
r", we can simplify the outgoing wave function by 
using the following approximation: 

e x p ( - i k l r -  r"l) ~ exp(ik . r")  exp(-ikr) (10) 
I r -  r"l r 

Thus we can write the wave function as 

( ' )  ~oo(r,t) = exp - i k  0. r + -~ Eot 

me ( , )  
2zch 2 exp ~ Eot q~(s)eXp(-lkr)r (11) 

where q~(s) is the Fourier transform of the potential and 
is directly proportional to the diffracted wave function, 
and 2ns = k 0 - k. Elastic scattering requires that 
I k0l -- I kl. This means that the Fourier transform 
integral should be evaluated only on the spherical 
surface in Fourier space, which is called the Ewald 
sphere in X-ray diffraction theory. 

We next review here the formulation for describing 
the diffracted wave function for a finite crystal, even 
though this formulation is a well known one in 
crystallography. We hope, by reviewing the formula- 
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tion for the single-scattering approximation, that we 
will gain some physical understanding of the limitation 
of the dynamical scattering approximations derived in 
the later sections. 

For a crystalline object whose limited dimensions 
can be described by a shape function, the diffracted 
wave function can be written as the convolution of 
the diffracted wave function of the infinite crystal and 
the shape transform. The shape transform itself is the 
Fourier transform of the shape function. In mathe- 
matical notation, the coefficient of the spherical wave in 
(11) becomes 

me 
F(k'k°) = 2 ~  [q~(s)*Z'(s)]' (12) 

where F(k,k0) is the diffracted wave function, q~(s) is 
the Fourier transform of the infinite crystal potential, 
the symbol * denotes a convolution operator, 27(s) is 
the shape transform, and the prime indicates that the 
resulting convolution integral is evaluated only on the 
Ewald sphere. For a finite crystal, each reciprocal- 
lattice point is spread out by the shape-transform 
function. The Ewald sphere may intersect the recipro- 
cal-lattice point, which has been extended in reciprocal 
space by the shape-transform function, and give a 
diffracted beam. 

The kinematic approximation can describe the 
geometrical pattern of the diffracted electron beams, 
but fails in most cases to give correct amplitudes and 
especially, phases of these beams. The fact that the 
kinematic approximation is inadequate even for heavy- 
atom gas molecules was realized first by Schomaker & 
Glauber (1952) and Glauber & Schomaker (1953), 
who tried to explain the anomalies in the gas 
diffraction pattern from UF6 molecules. Recent results 
in a test study with the crystalline structure of 
fl-glycine (Quon, 1970) have also shown the kinematic 
approximation can be insufficient for the description of 
the scattering of electrons by organic crystals. 

Phase-object approximation and higher-order 
phase-object approximation 

A. Phase-object approximation 
Since the wavelength of an electron in the high- 

voltage microscope is very small and since the object 
potential can be assumed to vary slowly over a single 
electron wavelength, the electron can be considered 
to propagate through the object following the classical 
path. The classical approach may therefore be quite 
sufficient to describe electron diffraction by crystals for 
the high-voltage microscope. 

In the classical approximation, the single, classical 
path is the only one which contributes to the path 
integral, instead of a continuous sum of integrals 
over all paths. For this case, the propagator from 

(ro,t o) to (r,t) can be written as the single-path integral: 

l 
P(r,t; ro,to) = ex p -~ mr'2dt' - -  h eV(r')dt' . 

to t o 

classical classical 
path path (13) 

In the second term within the argument of the expo- 
nential function, the integral over the time t' can be 
converted to an integral over the electron trajectory 
by the use of the following approximate relation 
between the electron velocity, v, position and time: 

1 
dt' = - dr'. (14) 

v 

The propagator can then be written as 

P(r,t; ro,to) = exp [ - h  tf lm~'2dt' - h---~ rf ev(r')dr '] 
t0 r 0 

classical classical 
path path (15) 

where the integral is taken along the classical-path 
trajectory. 

For high-energy electrons, the scattering is confined 
to a small angle. Thus, we can assume that the 
classical-line path can be approximated by a straight- 
line path parallel to the incident beam direction (Fig. 1). 
The first term in (15) is again the propagator for the 
free electron. For a path length much greater than the 
electron wavelength, this term can be described by the 
plane wave: 

[ ' 
exp - i k .  (r - r0) + ~ E(t - to) 

With such an approximation, the propagator without 
the time factor, 

can be written as 

P(r; r o) = ~exp[--ik. (r ro)], 

×exp[--~v Zf eV(p, Zt)dZ']}(~(X-Xo)~(Y-yo)(16) 

P o t e n t i a l  f i e l d  I 
I 

I 
r I 

I 
i n c i d e n t  e l e c t r o n  

(,,~'~.yo.'~ o i' I(Xo,Yo,Zo+ H) 

/ 
T r a n s m i t t e d  
w a v e  f u n c t i o n  

Fig. 1. Schematic diagram illustrating the single, straight-line path 
used in deriving the phase-object approximation. 
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where 6 is the Dirac delta function and p = (x,y). In 
(16), we have assumed that the incident-beam direction 
is along the z axis. 

The straight-line path approximation is valid only 
when both the integral of the potential as well as the 
kinetic energy over the classical-line path at a small 
angle from the incident-beam direction can be approxi- 
mated by the integral over the straight-line path parallel 
to the incident-beam direction. In other words, the 
straight-line path approximation is justified if and only 
if the following two conditions are satisfied. (1) The 
difference in path length between the classical-line path 
at a small angle and the straight-line path parallel to 
the incident beam direction is much smaller than the 
electron wavelength, i.e. 

HO 2 
- - < 2 .  (17) 

2 

In (17), 0 is the scattering angle, H is the object 
thickness and 2 is the electron wavelength. The strong 
condition in (17) is also required for the stationary- 
phase approximation (Schiff, 1956). (2) The potential 
does not change appreciably within the column 
diameter, d, associated with the angle of the stationary 
phase approximation (i.e. d = HO). 

The transmitted wave function, for a slab of a 
potential field of thickness H, can be obtained by 
substituting the propagator into (1). Noting the 
Dirac delta function in the propagator, we can write the 
wave function as 

i 
gt(p) = exp(-- ikH) exp -- hv 

Zo+H 

Zo 

where ~(p) is the transmitted wave function at the exit 
face of the slab. 

Equation (18) is, of course, the transmitted wave 
function of the phase-object approximation. The 
validity of this approximation depends on the electron 
wavelength, the deviation from the average potential 
(i.e. the strength of the Fourier coefficients), the 
thickness of the object and the scattering angle. 

Unlike the first Born approximation, the phase- 
object approximation takes multiple scattering pro- 
cesses into account. The scattered wave in the phase- 
object approximation is assumed to propagate in the 
same direction as the incoming electron wave. To the 
first order in the potential, the phase-object 
approximation is therefore not exactly the same as the 
first Born approximation. The phase-object approxima- 
tion can be loosely described by saying that its Ewald 
sphere is approximated as a plane, although it is 
known that the Ewald-sphere construction cannot 
ordinarily be used to predict the amplitude of the 
diffracted beam intensity in the dynamical electron- 
scattering approximation. 

B. Higher-order phase-object approximation 

The phase-object approximation was derived under 
the condition that the electron propagates through the 
object following a straight-line path. The validity of this 
approximation is limited to a very small angle and to a 
very thin object. For an object of sufficient thickness 
the phase-object approximation fails to describe the 
electron-scattering process. The need for an approxima- 
tion which can be used for larger object thickness is 
therefore in demand. The expected approximation must, 
however, give an invertible relation between the 
transmitted wave function and the object potential so 
that it can be used for correction of the dynamical 
scattering effect on the electron-micrograph image. We 
develop here a higher-order phase-object approximation 
which has the required improvement in behavior. 

The propagator for an electron influenced by the 
potential field V(r) can be written as the separate 
sum of path integrals over the straight-line and non- 
straight-line paths. The propagator can then be 
described by 

1 
P(r,t; ro,O ) = ~r exp[--ik. (r -- ro)] 

Z i~+ tt  

x exp - ~ e V ~ , Z ' ) d Z '  + -hEot 3 ( x - x o ) 3 ( y - y o )  
Zo 

t 1 
+f' exp [-  ~ i f eV(r')dr'- -~if~mi'~dt']Dr' 

,,, o (19) 

where the prime in the integral sign indicates that the 
integral is taken over all possible non-straight-line 
paths, and N is a normalizing factor. 

Let us assume that only a certain subset of paths, 
which initially follow the incident-beam direction in a 
straight-line path and then cascade along this path 
with subsequent straight-line propagation, give signifi- 
cant contributions to the propagator of an electron 

Poten t ia l  h e l d  
I 

. . . .  ; yR, Z O + H ) "  (x - , ..... o, i 

Inc iden t  I" H ,I 
e lec t ron  w a v e  

T r a n s m i t t e d  
w a v e  func t ion  

Fig. 2. Schematic diagram illustrating the family of linear paths, 
each with a single kink, which are used for deriving the 
higher-order phase-object approximation. Each path is charac- 
terized by its point of entry at the plane Z = Zo; its point of 
deflection and the corresponding angle 0;; and the associated 
increase in path length, & i. 0m~ is defined in terms of the 
thickness, Zpo A, for which the phase-object approximation is 
an adequate description. 
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passing through a lamellar volume of potential field of 
thickness H (Fig. 2). The transmitted wave function 
derived by including these paths in the evaluation of 
the propagator can be expected to be of superior 
accuracy in comparison with that of the phase-object 
approximation. Let us further assume that the scatter- 
ing is limited to a small angle. For electron microscopy 
at high energy, this assumption is justified for 
reasonably thick objects because the electron momen- 
tum used is much larger than the momentum change 
due to interaction with the object's potential field. 
However, as the object thickness becomes very large 
the number of electrons which undergo multiple 
scattering increases, and a large number of electrons 
are scattered at a large angle. In this case, the 
assumptions above will break down. 

For a potential that is weak compared with the 
kinetic energy of the electron, the integral of the 
potential along any one of these non-straight-line 
paths can be approximated by the integral along the 
straight-line-path parallel to the incident beam direction. 
The path integral of the kinetic energy can, however, 
be quite different for these two different path lines. 
The difference in path length between the straight-line 
and non-straight-line path can be approximately 
described by 

6 i = R (p,p'). - -  Oi  

2 
and 

R (,p,p' ) 
0 i -- - -  (20) 

(H-- Zi) 

where R(p,p') = [(x - x ')  2 + (y - y')21~/2 and H is 
the object thickness. With this approximation, the 
propagator in (19), without the time factor exp(iEot/h), 
can then be written as 

Zt)~-ll  l [ , ;  ] P(r, ro) = ~ exp - b y  eV(p,Z ' )dZ ' -  ikH 
Z o 

{ [ 0 i ] }  (21) 

i=1 

where N is the normalizing factor and n is the total 
number of paths. The term 1/n is used to normalize 
the sum of the series. With this normalization, the 
propagator converges to that of the phase-object 
approximation, when 0~ approaches zero. 

The sum over the angle 0~ should be restricted to 
some maximum value, in order to be consistent with 
the earlier assumption that the scattering angle is small. 
However, as Z i approaches the object thickness, 0 i 
approaches a maximum value n/2. We know that the 
scattering of high-energy electrons is confined mostly 
to a cone of a very small angle, and we are then left 
with the dilemma of how to specify this maximum 
angle. 

In the case of the phase-object approximation, we 
have assumed that the contributions of these non- 
straight-line paths are negligible. The non-straight-line 
path is insignificant for an object thickness where the 
phase-object approximation is valid. With this idea in 
mind, we can set the maximum angle as 

R(p,p') 
0ma x "~ A Z P o A  (22) 

where AZpo A is the object thickness for which the 
phase-object approximation is valid, or for which the 
contributions of non-straight-line paths are negligible, 
up to the desired resolution. 

The sum of the series, depending on 0 i, in (21) can 
be expressed as an integral over 0 as follows: 

lim - exp -~ 
n , o o  /'/ . 

/=1 

()max 0max 

= f e x p [ - i k R ( p , p ' ) ~ ] d O / f  dO 
0 t 0 I 

where 01 = R(p,p')/H. After performing this integra- 
tion, we can substitute the result into (21). We have 
then 

Z()+ I I  ] P(r, r0) = ~ exp -hvv eV(p ,Z ' )dZ ' -  ikoH 
Zo 01 ] 

× 

-ikR(,p,p')(Oma x - 0,) 
(23) 

Substituting the propagator into (1) and also using 
(22) for 0max, the transmitted wave function ~v(p) can 
be described by the following integral, which is carried 
out over the initial plane, 

I ZI)+I! 1 1 i 
~(P) = ~r f exp -hvv f eV(p ' ,Z )dZ-  ikH 

Zo I r 1 
x expL ~ - - ~ j - e x P L  2A--~P°A d d p  

- l k R ? ' P ' )  ( ] I z:llpoA ) 

(24) 

for H > AZpo A. In this equation, we have assumed 
that the wave function at the initial plane Z 0 = 0 can 
be described by exp(- ik .  Z0) = 1. Equation (24) is the 
transmitted wave function for the higher-order phase- 
object approximation. In order to be consistent with the 
small-angle approximation, the integral in (24) should 
be limited to values corresponding to a small angle. 
However, for large angles the path difference described 
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by (20) will be extremely large, and the phase change 
due to this difference in path length will oscillate very 
rapidly. As a result, the contribution from the large 
angles to the integral will be insignificant (Goodman, 
1968). The integral in (24) can be performed then over 
all possible values without making a significant error 
in the transmitted wave function. 

The complex wave amplitude of the diffracted 
electrons can be written as the Fourier transform of 
the object's transmitted wave function. We then have 

exp[ i 
hv 

1 
F(k,k o) = e x p ( - i k H )  7 ~V 

Zo+H 

~o 

I p2 1t p2 - exp ( - ik  2AZvoA . 

(25) 
for H > AZvo A where ,  denotes a convolution, , 7  is a 
Fourier transform operator, N is the normalizing factor 
and R (p,0) has been replaced by p. This is the diffracted 
wave for the higher-order phase-object approximation. 
Its validity can be expected to depend on the strength 
of the potential, the object thickness and the scattering 
angle. 

Multisliee dynamical approximation 

The multislice dynamical approximation was first 
developed by Cowley & Moodie (1957) on the basis 
of the theory of physical optics. In their formulation, 
they considered that the electron wave passing through 
the potential field of a finite domain suffers a phase 
modification not only due to the effect of the potential 
field but also due to the spread of the wave by the 
Fresnel propagation processes. They have also shown 
that, for a periodic potential, the multislice dynamical 
approximation reduces to Bethe's two-beam dynamical 
formulation in the case where one considers that only 
the forward scattered beam and one diffracted beam 
have dominant amplitudes (Cowley & Moodie, 1957). 
Furthermore, Fujiwara (1959) has shown that applica- 
tion of the higher-order Born approximation to obtain 
the general solution for electron scattering by crystals 
is consistent with the multislice approximation. 
Fujimoto (1959) has also demonstrated that the 
scattering-matrix theory gives a formulation which is 
identical with the multislice dynamical formulation. 
By comparison of observed diffraction intensities 
and/or image intensities with the corresponding 
intensities calculated according to the Cowley & 

Moodie theory, much important information about the 
object has been obtained (Allpress et al., 1972; Anstis, 
Lynch, Moodie & O'Keefe, 1973). 

It should be expected that the path-integral formula- 
tion of quantum mechanics can be used to derive the 
multislice approximation. The multislice dynamical 
approximation is therefore rederived here in order to 
demonstrate the unity of the scattering approximations 
treated in this paper. 

The propagator of an electron passing through a 
slab of a potential field can be described by the path- 
integral equation (2). The path integral can be obtained 
by dividing the potential field into n slices of thickness 
A Z .  Within each slice, we assume that only the straight- 
line paths at various angles will give a significant 
contribution to the propagator (Fig. 3). The validity 
of this assumption depends upon the thickness of the 
slice taken as well as upon the strength of the potential 
field. The difference in path length between the electron 
passing through the straight-line path (i.e. perpendicular 
to the slice) and the one scattered at a certain angle is 

Ai = [Ri(Pi, ' + AZ~] 

where Rz(pi,p~_,) = [(x i - x~_,) 2 
p = (x,y) and A Z  i is the thickness 
us assume that the slice is very 
electron momentum is much larger 

In _ A Z  i (26) 

+ 0 ' ,  - y [_ , )21 ' /= ,  
of the ith slice. Let 
thin and that the 
than the change of 

the momentum due to interaction with the potential 
field. The electrons can be said to be scattered mostly 
into a small angle. The difference in path length can 
then be approximated as 

Ai ... R~(pi, p[_ ,) _ A Z ,  O~ (27) 
2AZ  i 2 

This path difference contributes an additional phase 
change to the propagator of the phase-object approxi- 
mation. This phase change is due to the contribution 
from the potential energy as well as from the kinetic 
energy of the electron. Since the object potential is 
assumed throughout to be small compared with the 
kinetic energy of electrons, the contribution from the 
potential energy, because of the very small difference in 

Potent ia l  held 

Incident ,'~z 1 AZ 2 z~z, &Zn Transmit ted 
electron w a v e  

wave funct ion 

Fig. 3. Schematic diagram illustrating the fan-like family of paths 
which branch out within individual slabs of the specimen, and 
which form the basis for deriving the Cowley-Moodie multislice 
approximation. 
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path length, can therefore be neglected. The propagator 
P(ri, r~_l) following the straight-line path from a point 
r i_~ at the entrance face of the slice to a point r i at the 
exit face can then be written as 

P(ri'r~-~) = A rexp hvv e V ( P ~ _ I , Z ' )  dZ' 
Z i  I 

1 

- i k ( A Z  i + Ai) / (28) 
A 

' ' ' Z i are respectively, where Pi-~ = ( X i - l , Y i - l )  and Zi_ ~, 
the z coordinates of the entrance and the exit face of 
the ith slice, and N is a normalizing factor. 

The transmitted wave function emerging from the 
exit face of the ith slice can be described by the 
following equation: 

v/i(Pi) = f ~i_,(o~_,) P(ri,  ri_,)dp~_ , (29) 

where ~i(Pi) and ~(Pi-,) are respectively, the trans- 
mitted wave function emerging from the exit face of the 
ith and the (i - 1)th slice. We have then 

~i(Pi) = j ~i-,(P~-l)~. exp - hvv eV(pi-"Z ' )dZ'  
Z i  l 

Ri (Pi' Pi-1) (30) 
--ik AZ i -k" 2--A-Zii dp~_, 

where A Z  i is the slice thickness of the ith slice. The 
integral over Pi-~ should be limited to values which are 
associated with a small angle. As in the case of the 
higher-order phase-object approximation, the rapid 
phase change at a large angle makes it possible for the 
integration to be performed over all possible values of 
P~-l without giving significant error to the transmitted 
wave function. 

Equation (30) can be rewritten as 
[ 

q/i(P) : e x p ( - - i k A Z i ) ~  q/i-l(,P) 
t (31) 

[ i 7f i ](_ikp21~[ 
× exp - -~v eV(p,Z')dZ' , ~ exp 

z , ,  2 A Z  i I J  

where • represents a convolution. This is the recursion 
relation for the transmitted wave in the multislice 

:approximation. The transmitted wave function for a 
sequence of n slices may be described by successive 
applications of the equation. 

The validity of the multislice approximation depends 
on the electron energy relative to the strength of the 
object potential and on the thickness of the slice taken. 
Goodman & Moodie (1974) have demonstrated that in 
the limiting case when the slice thickness goes to zero 
and the number of slices goes to infinity (such that this 
product remains constant and equal to the object 
thickness) the multislice approximation then becomes 
consistent with the conventional quantum-mechanics 
description for forward electron scattering. 

Conclusions 

The path-integral formulation of quantum mechanics, 
when compared with conventional quantum mechanics, 
gives a clear physical picture for high-energy 
electron-scattering processes. The kinematic approxi- 
mation can, in the path-integral formulation, be 
easily identified as a single-scattering approximation. 
Furthermore, the path-integral formulation gives clearly 
the various physical assumptions that lead to the 
different dynamical scattering approximations. For 
instance, the phase-object approximation was obtained 
from the assumption that a single straight-line path is 
sufficient to describe high-energy electron scattering. 
It can be expected to be valid when the scattering angle 
is extremely small. Improvement can be made by 
considering the non-straight-line paths. The higher- 
order phase-object approximation was developed under 
this consideration. Further improvement can be made 
by considering all possible straight line paths limited 
to forward directions, and this results in the so-called 
'multislice dynamical approximation'. The validity of 
the multislice approximation depends therefore on the 
forward scattering nature of high-energy electrons. 
With increasingly small slice thickness, the multislice 
approximation can be expected to give a correct 
description for the forward scattering approximation. 

The phase-object approximation and higher-order 
phase-object approximation give an attractive solution 
for the retrieval of the projected potential when the 
scattered wave function is known. The validity of these 
approximations is evaluated in the subsequent papers 
of this series. Within certain validity domains these 
approximations can therefore be properly used for the 
structure analysis of crystals. 

This work was supported by NIH Grant GM-19452. 
We wish to express special thanks to Professor J. M. 
Cowley for critical comments on the manuscript. 

APPENDIX 
Evaluation of the integral [in equation (8)] 

For the far-field region and for the case where the 
potential V(r,t) is independent of t, (8) can be written as 

~(r,t) = exp --ik o . r +  Eot 

i 
f F(Ir - r ' l , t ' )  eV(r') exp(-iko.r ')dr '  (a) +~  
, J  

and 

m 
F ( I r -  r'l, t) = 

0 

( , )  
x exp 2ht  exp ~ Eot'  dt' (b) 
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where t is the time required for the electron to travel 
f rom the initial point r 0 to the final position r. For  a 
limited potential field and for a large value of  t(t --, Go), 
we can then write (b) as 

r---, 00 
t-*CO 0 

(,mr ) 
× exp 2ht' exp Eot' dt'. 

To simplify the integral, we substitute 

imlr -- r'l 2 )1/2 
2ht' 

by the variable p. We have then 

(ira) 
F ( I r - -  r ' l ,  t) = 

t-.co ~-~-/2h 

and 

f I r - -  r 'l  exp _ p 2 _  dp 
0 

m l r -  r'l 2 
a 2 _ E o . 

2h 2 

The definite integral can be integrated in closed form 
(see, for example,  Standard Mathematical  Tables, 
1965). This equation can be rewritten as 

F(Ir--r'l,t)--i~-~mh( 1 ) 
t-,co [ r -  r'l 

×exp  - 2mEo) 1 /21r-r ' l  . 

Not ing that  E o is the energy of  the free electron, we can 
write E 0 = (hk)2/2m where Ikl = Ik01. Equat ion (e) 
can then be represented as 

im 1 
F ( I r - -  r ' l ,  t) t-'-~̂ l~'~:z~z/~ Ir e x p ( - i k l r  r ' l).  rrl 

Substituting this relation into (a), we can finally write 
(a) as follows: ( i )  
~oo(r,t) = exp - i k  0. r + ~ Eot 

me f exp(_ ik0 . r , )  V(r ')  e x p ( - i k l r -  r ' l )dr , .  
27rh 2 I r - r'l 

References 
(C) ALLPRESS, J. G., HEWAT, E., MOODIE, A. F. & SANDERS, 

J. V. (1972). Acta Cryst. A28, 528-536. 
ANSTIS, G. R., LYNCH, D. F., MOODIE, A. F. & O'KEEFE, 

M. A. (1973). Acta Cryst. A29, 138-147. 
BETHE, H. (1928)Ann. Phys. (Leipzig), 87, 55-129. 
BORN, M. (1926). Z. Phys. 37, 863-867; 38, 803-827. 
COWLEY, J. M. & MOODIE, A. F. (1957). Acta Cryst. 10, 

609-619. 
FEYNMAN, R. P. (1948). Rev. Mod. Phys. 20, 367-387. 
FEYNMAN, R. P. & HIBBS, A. R. (1965). Quantum 

Mechanics and Path Integrals. New York: McGraw-Hill. 
FUJIMOTO, F. (1959). J. Phys. Soc. Jpn, 14, 1558-1568. 
FUJIWARA, K. (1959). J. Phys. Soc. Jpn, 14, 1513-1524. 
GLAUBER,  R.  • SCHOMAKER, V. (1953). Phys. Rev. 89, 

667-671. 
GOODMAN, J. W. (1968). Introduction to Fourier Optics, 

McGraw-Hill Physical and Quantum Electronic Series, 
pp. 59-60. San Francisco: McGraw-Hill. 

GOODMAN, P. & MOODIE, A. F. (1974). Acta Cryst. A30, 
280-290. 

HOWIE, A. & WHELAN, M. J. (1961). Proc. R. Soc. London, 
A263, 217-237. 

LANNES, A. (1976). J. Phys. D, 9, 2533-2544. 
LYNCH, D. F., MOODIE, A. F . &  O'KEEFE, M. A. (1975). 

Acta Crvst. A31, 300-307. 
MISELL, D. L., BURGE, R. E. & GREENAWAY, A. H. 

(1974). J. Phys. D, 7, L27-L30. 
NELSON, E. (1964). J. Math. Phys. (NY), 5, 332-343. 
OH'rstJKI, Y. H. & YANAGAWA, S. (1966). J. Phys. Soc. 

Jpn, 21,326-335. 
QUON, W. K. (1970). PhD Thesis, Univ. of California, 

(e) Berkeley. 
SCruFF, L. I. (1955). Quantum Mechanics. New York: 

McGraw-Hill. 
SCHIFF, L. I. (1956). Phys. Rev. 103, 443-453. 
SCHOMAKER, V. & GLAUBER, R. (1952). Nature (London), 

170, 290-29 I. 
ScoTT, W. T. (1963). Rev. Mod. Phys. 35, 231-313. 
Standard Mathematical Tables (1965). 14th ed., p. 345. 

( f )  Cleveland, Ohio: Chemical Rubber Publishing Co. 
STURKEV, L. (1962). Proc. Phys. Soc. 80, 321-354. 


